Jelly-Patch: a Fast Format for Recording
Changes in RDF Datasets

Piotr Sowinski 2, Kacper Grzymkowski !, Anastasiya Danilenka '

"NeverBlink, 2 Warsaw University of Technology

& 2 NeverBlink

* RDF datasets often change — quads get added and deleted
* Recording these changes is useful in:

* Change data capture

* Database auditing

* High-availability RDF databases

* Event-driven or stream processing systems

* RDF Patch allows for that, but the available serialization formats
are too slow in parsing & serialization, creating bottlenecks!

"# Example RDF Patch file

"TX . # Transaction begin

A _:sensor@@l <http://ex.org/hasTemperature> "23"
-D :sensor@@l <http://ex.org/hasTemperature> "22"
.TC . # Transaction commit

. # Add triple

New binary serialization format for RDF Patch

* Based on the already proven Jelly-RDF binary format
* Supports quad add / delete and prefix add / delete operations

A single Jelly-Patch file or stream may contain many patches

Uses Protobuf, ensuring portability & easy implementation

Compressed by design - reduces size of IRIs and repeated
terms with a lightweight algorithm

Full transactional support

* Transaction start, commit, and rollback commands
* Allows for implementing distributed transactional RDF DBs

High-performance Jena & RDF4J implementations

* Full integration with Apache Jena’s RDF Patch stack
* Low-level integration for Eclipse RDF4J

* Reuses highly-optimized code from IJelly-JVM for maximum
performance

* 100% open-source, Apache 2.0 license

Benchmark datasets

There were no benchmarks for recording RDF changes, so we
created our own benchmark datasets, representing two different,
popular use cases.

Change data capture: bsbm-cdc

* Recorded changes from a Berlin SPARQL Benchmark run
* 450k patches (transactions), ~35M triple adds, ~2M triple deletes
* ~9GB uncompressed in RDF Patch text format

Event streams: assist-iot-weather

* Rolling diff (delta) of a stream of loT weather observations

* Derived from the RiverBench assist-iot-weather dataset

* 701k patches (observations), ~8M triple adds, ~8M triple deletes
* ~2.5GB uncompressed in RDF Patch text format

Both datasets are available on Zenodo under CC BY 4.0.

. # Delete triple.-

Experiments and results

Dataset

Throughput (operations/s)

Conclusion

We compared Jelly-Patch with other RDF Patch formats in
Apache Jena: RDF Patch text, RDF Patch binary (based on Jena
Thrift), and SPARQL Update.

Jelly-Patch reduced the serialized size of the patches by 3.5x for
bsbm-cdc and 8.9x for assist-iot-weather, as compared to the
RDF Patch text format (baseline).

I ¢ o

o R 100 0%
S N 116 .0%
I 121.2%

2%

" D  00.0% mm= RDF Patch binary

B N 122.5% W SPARQL Update
I 2.6%

0 20 40 60 80 100 120
Serialized size relative to RDF Patch text (%)

Method
mmm elly-Patch
mmm RDF Patch text

Accidental win - probably the best way to
compress loT data streams?

RDF Patch preserves all information of the original weather data
stream, which was almost 15 GB in the original (N-Triples). With
Jelly-Patch this drops to 279.6 MB (52x size reduction). When
level 19 zstd compression is applied on top, we achieve 15.3 MB
(almost 1000x compression).

10

(o]

Method
mmm jelly-Patch
mmm RDF Patch text
mmm RDF Patch binary

)]

x10° Task = Serialization Task = Deserialization
3.95 4.16

10.53 9.99
4.32 4.12
III243|II III|II

7.56
3.13
2.19
1.06 L36III
bsbm-cdc assist-iot-weather

bsbm-cdc assist-iot-weather
Dataset Dataset

IS

N

o

In serialization throughput experiments, Jelly-Patch is 2.5x faster
than any other method in |oT data, and on par with Jena binary in
CDC data (pessimistic case for Jelly). In parsing, Jelly-Patch is 4.6x
and 2.4x faster, respectively. We observed speeds up to 10M ops/s
on a single thread.

* The new Jelly-Patch format is much more compressed & faster
than existing RDF Patch serializations.

* This work answers a direct need in modern, data-intensive RDF
systems, removing a critical performance bottleneck.

* Jelly-Patch has an open specification and robust, open-source
implementations for Jena and RDF4J.

* Future work: investigating uses in RDF stream compression;
making a full, transactional RDF/SPARQL binary protocol.

We welcome any feedback, feature requests or ideas for how
to integrate Jelly-Patch with other software projects!

Datasets

https://w3id.org/jelly




