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Google invented Protobuf to solve it…

But 5% of their datacenter CPU 
cycles are still spent on ser/des!

Kanev, S., Darago, J. P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G. Y., & Brooks, D. (2015, June). Profiling a warehouse-scale 
computer. In Proceedings of the 42nd annual international symposium on computer architecture (pp. 158-169).
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Can your serialization keep up with the 
rest of the system?



Nanopublication network
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Anatomy of a nanopublication

● FAIR by design
● 1 nanopub = 1 RDF dataset

(4 named graphs)
● ~50–200 triples
● Lots of them!
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Starting situation

● HTML / JSON list pages with 
links to individual nanopubs

● Individual nanopubs served 
as TriG files

● Accessing 60k nanopubs = 
60k+ HTTP requests
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Starting situation – issues
● TriG format is very slow to parse

● Repeated HTTP requests add a lot of overhead

The result:

● Very slow replication throughput

● Additional latency (1 round-trip for list, then 1 for nanopub)



Solution: Jelly
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Jelly in a nutshell
● Binary RDF format based on Protobuf

● 100% open spec & open source (https://w3id.org/jelly)

● Very fast to write (2x faster than N-Triples in Jena)

● Very, very fast to read (12x faster than N-Triples)

● Reasonably well-compressed (6x smaller than N-Triples)

https://w3id.org/jelly
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Jelly in a nutshell
Works with:

● Java (Apache Jena, RDF4J, Titanium)

● Python (RDFLib or no library)

● Rust (Sophia) – experimental, community-led

● Neo4j

● CLI application
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How does Jelly work?
● Lightweight streaming compression algorithm
● For n triples:

○ O(1) memory complexity
○ O(n) time complexity

● Max supported triple count = ∞
● 1 file can contain 1 RDF document (graph or dataset)...
● …or 1 file can contain many RDF documents (!)

RDF dataset RDF dataset RDF dataset RDF dataset…
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Results
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Naïve 
comparison:
original

Takes >3 hours 
to complete.
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Naïve 
comparison:
Jelly

Takes ~4 seconds 
to complete.
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Raw ser/des throughput comparison
(no HTTP overhead)

Platform: Oracle GraalVM 24+36.1, RDF4J 5.1.4, Jelly-JVM 2.10.3, Ryzen 9 7900 5.0 GHz, 64 GB RAM
Dataset: 10M nanopublications (RiverBench: nanopubs)
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Why not
pipelining, parallelization, caching…?

● More complex = more costly
● Hidden resource usage – overhead still largely exists!
● Depends on the client to “do things right”
● Jelly can also compress across nanopublication boundaries 
● Caches don’t help!

○ Cache is usually completely cold



Conclusion
● Communication went from a bottleneck to a non-issue thanks to Jelly

● Live on the nanopublication network: https://nanopub.net 

● Large potential for transferability:
○ Mature tooling & documentation
○ Use cases: client-server communication, 

microservices, database dumps, streaming ingest, 
database replication, and more…

○ Open community – anyone can contribute 
and use Jelly!

● 100% open-source

https://w3id.org/jelly

⭐ Star us on 
GitHub!

https://nanopub.net
https://w3id.org/jelly


Backup slides
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Solution summary
● Registry serves arbitrary subsets of nanopubs as a single streaming 

HTTP response
● Query & Registry consume the stream, unpack it, and process each 

nanopub individually

To retrieve 60k nanopubs:
● Original: 60k+ requests
● Jelly: exactly 1 request
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Size comparison
RiverBench dataset: nanopubs, obtained with Apache Jena 5.1.0


