
Piotr Sowiński¹, Tobias Kuhn², Karolina Bogacka¹
¹ NeverBlink
² Knowledge Pixels

Tackling inter-service RDF 
communication bottlenecks in the 
Nanopublication network with Jelly

September 5, 2025
SEMANTiCS, Vienna, Austria



2

Client

Server

Service

Service

Service

Service



3

Google invented Protobuf to solve it…

But 5% of their datacenter CPU 
cycles are still spent on ser/des!

Kanev, S., Darago, J. P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G. Y., & Brooks, D. (2015, June). Profiling a warehouse-scale 
computer. In Proceedings of the 42nd annual international symposium on computer architecture (pp. 158-169).



4

Can your serialization keep up with the 
rest of the system?



Nanopublication network



6

Anatomy of a nanopublication

● FAIR by design
● 1 nanopub = 1 RDF dataset

(4 named graphs)
● ~50–200 triples
● Lots of them!



7



8



9

Nanopublication network

Nanopub
Registry

Nanopub
Registry

Nanopub
Registry

Nanopub
Query

Nanopub
Query

Nanopub
Query

New nanopubs

User queries



10

Nanopublication network

Nanopub
Registry

Nanopub
Registry

Nanopub
Registry

Nanopub
Query

Nanopub
Query

Nanopub
Query

New nanopubs

User queries

Replicate new nanopubs 
to other nodes



11

Nanopublication network

Nanopub
Registry

Nanopub
Registry

Nanopub
Registry

Nanopub
Query

Nanopub
Query

Nanopub
Query

New nanopubs

User queries

Replicate all nanopubs 
from Registry to Query



12

Starting situation

● HTML / JSON list pages with 
links to individual nanopubs

● Individual nanopubs served 
as TriG files

● Accessing 60k nanopubs = 
60k+ HTTP requests



13

Starting situation – issues
● TriG format is very slow to parse

● Repeated HTTP requests add a lot of overhead

The result:

● Very slow replication throughput

● Additional latency (1 round-trip for list, then 1 for nanopub)



Solution: Jelly



15

Jelly in a nutshell
● Binary RDF format based on Protobuf

● 100% open spec & open source (https://w3id.org/jelly)

● Very fast to write (2x faster than N-Triples in Jena)

● Very, very fast to read (12x faster than N-Triples)

● Reasonably well-compressed (6x smaller than N-Triples)

https://w3id.org/jelly


16

Jelly in a nutshell
Works with:

● Java (Apache Jena, RDF4J, Titanium)

● Python (RDFLib or no library)

● Rust (Sophia) – experimental, community-led

● Neo4j

● CLI application



17

How does Jelly work?
● Lightweight streaming compression algorithm
● For n triples:

○ O(1) memory complexity
○ O(n) time complexity

● Max supported triple count = ∞
● 1 file can contain 1 RDF document (graph or dataset)...
● …or 1 file can contain many RDF documents (!)

RDF dataset RDF dataset RDF dataset RDF dataset…



Nanopub 1

Jelly blob

Nanopub 2

Jelly blob

Nanopub 3

Jelly blob

Nanopub 4

Jelly blob

Nanopub 5

Jelly blob

Nanopub Registry
API app (Java)

Nanopub Registry
DB (MongoDB)

Clients



Nanopub 1

Jelly blob

Nanopub 2

Jelly blob

Nanopub 3

Jelly blob

Nanopub 4

Jelly blob

Nanopub 5

Jelly blob

“Give me nanopub 
number 4, please!”

Nanopub Registry
API app (Java)

Nanopub Registry
DB (MongoDB)

Clients



Nanopub 1

Jelly blob

Nanopub 2

Jelly blob

Nanopub 3

Jelly blob

Nanopub 4

Jelly blob

Nanopub 5

Jelly blob

“Give me nanopub 
number 4, please!”

Jelly blob 4

HTTP response
(streaming)

Nanopub Registry
API app (Java)

Nanopub Registry
DB (MongoDB)

Clients



Nanopub 1

Jelly blob

Nanopub 2

Jelly blob

Nanopub 3

Jelly blob

Nanopub 4

Jelly blob

Nanopub 5

Jelly blob

“Give me nanopubs by 
Tobias Kuhn, please!”

Nanopub Registry
API app (Java)

Nanopub Registry
DB (MongoDB)

Clients



Nanopub Registry
API app (Java)

Nanopub Registry
DB (MongoDB)

Clients

Nanopub 1

Jelly blob

Nanopub 2

Jelly blob

Nanopub 3

Jelly blob

Nanopub 4

Jelly blob

Nanopub 5

Jelly blob

Jelly blob 1 Jelly blob 3 Jelly blob 4

Merged Jelly stream (1, 3, 4) Transcoding

“Give me nanopubs by 
Tobias Kuhn, please!”

HTTP response
(streaming)



Results



24

Naïve 
comparison:
original

Takes >3 hours 
to complete.



25

Naïve 
comparison:
Jelly

Takes ~4 seconds 
to complete.



26

Raw ser/des throughput comparison
(no HTTP overhead)

Platform: Oracle GraalVM 24+36.1, RDF4J 5.1.4, Jelly-JVM 2.10.3, Ryzen 9 7900 5.0 GHz, 64 GB RAM
Dataset: 10M nanopublications (RiverBench: nanopubs)



27

Why not
pipelining, parallelization, caching…?

● More complex = more costly
● Hidden resource usage – overhead still largely exists!
● Depends on the client to “do things right”
● Jelly can also compress across nanopublication boundaries 
● Caches don’t help!

○ Cache is usually completely cold



Conclusion
● Communication went from a bottleneck to a non-issue thanks to Jelly

● Live on the nanopublication network: https://nanopub.net 

● Large potential for transferability:
○ Mature tooling & documentation
○ Use cases: client-server communication, 

microservices, database dumps, streaming ingest, 
database replication, and more…

○ Open community – anyone can contribute 
and use Jelly!

● 100% open-source

https://w3id.org/jelly

⭐ Star us on 
GitHub!

https://nanopub.net
https://w3id.org/jelly


Backup slides



30

Solution summary
● Registry serves arbitrary subsets of nanopubs as a single streaming 

HTTP response
● Query & Registry consume the stream, unpack it, and process each 

nanopub individually

To retrieve 60k nanopubs:
● Original: 60k+ requests
● Jelly: exactly 1 request



31

Size comparison
RiverBench dataset: nanopubs, obtained with Apache Jena 5.1.0


