
Piotr Sowiński1,2, Karolina Bogacka1,2, Anastasiya Danilenka1,2, Nikita Kozlov1,2

¹ NeverBlink
² Warsaw University of Technology, Poland

Jelly: a Fast and Convenient RDF 
Serialization Format

September 3, 2025
SemDev @ SEMANTiCS, Vienna, Austria



We have RDF formats that do things well!

2

● N-Triples – simplicity
● Turtle – human readability
● JSON-LD – non-RDF experience
● HDT – compressed, queryable dumps
● RDF/XML – being annoying…



But, I desire speed.

3

● Client-server communication
● Inter-service communication
● DB dumps and bulk loads
● Streaming pipelines
● DB replication
● Change data capture

Stefan Laube, public domain



4

Jelly in a nutshell
● Binary RDF format based on Protobuf

● 100% open spec & open source (https://w3id.org/jelly)

● Implemented for: Java, Python, Rust (experimental)

● Convenient CLI tool

● Very fast

● Reasonably well compressed

https://w3id.org/jelly


5

Serialization speed (Apache Jena)
RiverBench task: 
flat-serialization-throughput, profile: 
flat-mixed-rdfstar 2.1.0. Details: 
https://w3id.org/jelly/dev/performance 

https://w3id.org/jelly/dev/performance


6

Parsing speed (Apache Jena)
RiverBench task: 
flat-deserialization-throughput, profile: 
flat-mixed-rdfstar 2.1.0. Details: 
https://w3id.org/jelly/dev/performance 

https://w3id.org/jelly/dev/performance


7

Compression ratio
RiverBench task: flat-compression, 
profile: flat-mixed-rdfstar 2.1.0. Details: 
https://w3id.org/jelly/dev/performance

https://w3id.org/jelly/dev/performance


8

How does Jelly work?
● Lightweight streaming compression algorithm
● For n triples:

○ O(1) memory complexity
○ O(n) time complexity

● Max supported triple count = ∞
● 1 file can contain 1 RDF document (graph or dataset)...
● …or 1 file can contain many RDF documents (!)

RDF dataset RDF dataset RDF dataset RDF dataset…



9

(experimental)

Jelly-JVM pyjelly

jelly.rs
RDFLib

Apache
Jena

Titanium
RDF API

Sophia

Pure Python
(no lib)



10

Get started -> https://w3id.org/jelly 

https://w3id.org/jelly


11

https://docs.google.com/file/d/1odWKbAfjHPvuoQE7KHim3mOm1doKZz_n/preview


12

https://docs.google.com/file/d/1oN6riO_davZdaa8463wJFGfSZ3Ldd0RI/preview


13

https://docs.google.com/file/d/1b7ZmutLlphkX6YRaYZiO2CAKuk2GHn_4/preview


14

https://docs.google.com/file/d/1nYAR-Ppa3qsD8mhHq1GIHHHuRv6k4GWf/preview


15

https://docs.google.com/file/d/1y2NeSR9F2KE_sFs5KnjHQpbS2j7u-iC4/preview


16

Other cool things you can do with Jelly
● Streaming over Kafka, MQTT, etc.
● gRPC
● Merging & recompressing RDF streams on the fly
● Live database replication (with Jelly-Patch)
● Change data capture (with Jelly-Patch)

Real-life use cases? 🡒 See my Industry Track talk on Friday!



17

Interoperability (and reuse)
● 100% open specification
● Conformance test kit
● Guide for new implementations
● Full coverage of RDF 1.1 and RDF-star

(experimental)

Jelly-JVM pyjelly

jelly.rs



18

Reuse (and interoperability)
● Generic implementations + library integrations pattern

○ Less work in maintaining implementations!
● Focus on supporting popular RDF libraries
● Simple dependencies (only Protobuf)
● Comprehensive docs with user stories
● Quick start guide



Conclusion
● Fast and convenient RDF format
● Works with Java, Python, Rust (experimental)
● Integrations for Jena, RDF4J, RDFLib, Neo4j & more
● Community

○ 100% open source
○ Community Discord server – come chat with us!
○ Community-led implementation for Rust

(big thanks to Arthur Vercruysse)
● Real-life gains 🡒 Friday, Industry Track talk

https://w3id.org/jelly

⭐ Star us on 
GitHub!

https://discord.gg/A8sN5XwVa5
https://w3id.org/jelly


20

Acknowledgements
Big thanks to all Jelly developers and the community who make this project possible!

The development of the Jelly protocol, its implementations, and supporting tooling was co-funded by the European 
Union. Project no. 0021/2025, funding program FENG.02.28-IP.02-0006/23 (Startup Booster Poland – HugeThing Sector 
Agnostic). The views expressed are of its authors and do not necessarily reflect the views of the European Union.

Total cost of project: 149 941,44 PLN
Contribution from European Funds: 149 941,44 PLN 



Backup slides



22

Interoperability & reuse in action



23

Serializat



24


