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Abstract: Over the years, RDF streaming has been explored in research and practice from many
angles, resulting in a wide range of RDF stream definitions. This variety presents a major challenge
in discussing and integrating streaming systems due to a lack of a common language. This work
attempts to address this critical research gap by systematizing RDF stream types present in the litera-
ture in a novel taxonomy. The proposed RDF Stream Taxonomy (RDF-STaX) is embodied in an OWL
2 DL ontology that follows the FAIR principles, making it readily applicable in practice. Extensive
documentation and additional resources are provided to foster the adoption of the ontology. Three
use cases for the ontology are presented with accompanying competency questions, demonstrating
the usefulness of the resource. Additionally, this work introduces a novel nanopublications dataset,
which serves as a collaborative, living state-of-the-art review of RDF streaming. The results of a
multifaceted evaluation of the resource are presented, testing its logical validity, use case coverage,
and adherence to the community’s best practices, while also comparing it to other works. RDF-STaX
is expected to help drive innovation in RDF streaming by fostering scientific discussion, cooperation,
and tool interoperability.

Keywords: RDF stream; taxonomy; ontology; interoperability; SKOS; nanopublications

1. Introduction

The Resource Description Framework (RDF) is a standard-backed foundation for mod-
eling and exchanging knowledge graphs, with a wide range of practical applications [1,2].
The RDF model is based on the building blocks of the Web (e.g., it uses Internationalized
Resource Identifiers for node names), making it very flexible and extensible [3]. The list of
use cases for RDF has expanded greatly since its inception, with time moving beyond ap-
plications where the modeled knowledge is treated as a single, static dataset. More recently,
the concept of RDF streams has gained traction in research and industrial applications.
Generally, an RDF stream refers to a potentially infinite stream of data modeled using
the RDF standard to which stream processing principles apply [4]. This research interest
resulted in numerous contributions to the field, such as streaming serializations, querying
and reasoning engines, programming frameworks, datasets, and other resources [5–8].
Without a doubt, streaming RDF solutions are in demand, and more innovation is still
needed. However, the landscape of RDF streaming terminology is fragmented, with many
dissimilar streaming task formulations and incompatible solutions.

The term “RDF stream” is used in the literature to refer to many different concepts,
ranging from theoretical models [9] to very technical ones, focusing on the representation
and practical usage [6,10,11]. As noted in past research works [12–14], RDF streaming sys-
tems need more standardization in stream exchange protocols and stream task definitions.
This would be beneficial not only in the academic context but also in the facilitation of the
distribution and reuse of RDF streams in practice. Additionally, it could enable streaming
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tool interoperability through the inclusion of appropriate metadata. At the same time, if
the research is to solve real-world problems, the variety of existing RDF streaming task
formulations must be embraced, not limiting oneself to one specific type of RDF stream.
However, up until now, there was very little academic discussion about the existing RDF
stream types—what stream types are used, how they relate to each other, and which use
cases are they applicable to. Our work aims to address this critical research gap, which has
a large impact on the uptake of RDF streaming in general.

The main contribution of this work is the RDF Stream Taxonomy (RDF-STaX), embod-
ied in an OWL 2 DL ontology. This novel taxonomy systematizes the existing RDF stream
types on the basis of a broad state-of-the-art review. RDF-STaX aims to be a practical and
useful resource for researchers and practitioners, enabling them to semantically annotate
RDF stream types in publications, software, and streams published on the Web. To achieve
this, RDF-STaX follows the community’s best practices for ontology publishing and is
accompanied by extensive documentation, including usage examples. The three envi-
sioned use cases for RDF-STaX are presented with accompanying competency questions
implemented in SPARQL. Two of these use cases were already implemented in practice—a
living state-of-the-art review of RDF streaming using nanopublications and annotating
stream types in RiverBench datasets. Finally, RDF-STaX is compared with other ontologies,
highlighting the gap that it covers.

This work is organized as follows. Section 2 presents a comprehensive literature
review of the topic. Section 3 introduces the proposed systematization of RDF streams,
along with an alignment of these definitions to the state of the art. Section 4 describes the
proposed RDF-STaX ontology. Section 5 presents the use cases envisioned for RDF-STaX,
while Section 6 includes a multifaceted evaluation of the proposed ontology, including
a comparison with other ontologies. Finally, Section 7 discusses the results and outlines
future work directions, with Section 8 presenting the concluding remarks.

2. Literature Review

The primary goal of this paper is to introduce a taxonomy of RDF stream types, which
naturally must be grounded in the state of the art to be relevant. As no comprehensive
and up-to-date review of this topic is available, here, we attempt to summarize the most
significant works that use the concept of RDF streams.

The scope of this study only includes RDF streams that can be fully represented using
the RDF 1.1 W3C Recommendation [3]. This notably excludes theoretical stream models
that do not have a direct translation to RDF, such as RSP-QL [9]. However, due to the
importance of such models, they are briefly discussed to provide additional context. The
reason for not considering purely theoretical models is that they are not directly comparable
to models that have a fixed representation in RDF 1.1, as they operate on a different level
of abstraction. Therefore, including both purely theoretical and fully representable RDF
streams in the review would make the resulting taxonomy methodologically flawed. This
scope decision is additionally motivated by the fact that only streams fully representable in
RDF can be easily exchanged and published on the Web using already existing protocols,
while the theoretical models have more limited applicability, for example, only within one
specific system (e.g., a stream reasoning engine). This choice is thus natural due to this
work’s focus on solving the challenge of streaming tool interoperability and harmonizing
the ways in which RDF streams are exchanged.

To cover the various areas of research related to RDF streaming, several survey papers
and books were included in this review [5,7,8,15–21] on topics such as RDF data manage-
ment, linked streaming data, and stream reasoning. For many of the examined works,
determining the exact nature of the stream was not trivial due to unclear descriptions and
a lack of standardized terminology. Therefore, not only were the papers examined but the
code and documentation were too where available.
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2.1. RDF Streaming Protocols

One prominent area of research that uses RDF streams is work focusing on streaming
protocols for transmitting RDF data. One of the earlier examples is Streaming HDT (S-
HDT) [22], which facilitates streaming RDF data in IoT devices. More specifically, S-HDT
producers (IoT devices) emit streams of compressed, unnamed RDF graphs. RDSZ [23]
is a later method that also attempts to stream compressed RDF graphs over the network.
ERI [10] is a similar approach; however, it has several views of the RDF stream. At the
highest level, ERI streams a continuous sequence of triples that is then divided into discrete
blocks (RDF graphs). Then, on the lowest level, these graphs are decomposed into subject-
molecules (graphs with a single RDF subject) that are then streamed over the network.
Therefore, ERI has three different views of the streaming problem, with each corresponding
to a different level in the protocol.

The RDF EXI communication protocol for constrained devices [24] focuses on stream-
ing RDF graphs in a very efficient manner. Finally, the recent Jelly protocol [6] treats RDF
streams similarly to ERI, streaming a sequence of RDF statements divided into discrete
elements (stream frames). The main difference is that Jelly can also stream quad statements,
making it generalizable to RDF datasets. It should be noted here that none of these works
assume time annotations to be a necessary part of RDF streams, in contrast to the works
described in the following subsection.

2.2. Stream Processing and Reasoning

There is a large body of research on the topics of RDF stream reasoning and stream
processing, where a special focus is often placed on the time annotations of stream elements.
We could find only one work in this category that did not consider the temporal aspect,
an early proposal for a streaming SPARQL engine from 2007 by Groppe et al. [25]. The
proposed engine executes queries over streams of RDF triples, in real time.

Most publications in this category focus on the inner workings of querying/reasoning
engines and adopt task formulations that are not fully grounded in the RDF specification.
The most popular such formulation is the stream of timestamped triples [9,21,26–33], where
a stream is a sequence of ⟨triple, timestamp⟩ tuples. There are many variations of this task,
with time intervals instead of timestamps [26], multiple timestamps per triple [33,34], and
different time domains. However, this model (and other equivalent or similar models, e.g.,
time-varying graphs [12,33,35]) by itself is not enough to fully realize and exchange an RDF
stream—this would require encoding the time information in RDF, which is often omitted
in these works.

The lack of grounding in the RDF specification of the timestamped triple model is
a known problem [29], and solutions to it have been proposed. The most prominent
formulation is the stream of timestamped named graphs, where each stream element
is a named RDF graph. The timestamp (or other metadata) of this graph is added by
making statements in the default graph about the named graph’s name node [36–38]. This
representation was possibly first proposed by Tappolet and Bernstein in 2009 [39] and was
then expanded by the W3C RSP Community Group, which created a draft specification
for the RSP Data Model [40]. The RSP Data Model uses the aforementioned formulation to
define RDF streams but also mentions that RSP engines may consume streams of graphs,
datasets, or named graphs and then turn them into RDF streams proper by associating each
element with a timestamp. The RSP Data Model is the most mature and best-grounded
model for representing timestamped streams, having been drafted by the community,
and even proposing the formal semantics of RDF streams. However, it was never made
into a W3C Recommendation, and the RSP Community Group at the time of this work’s
submission appears to be inactive: https://lists.w3.org/Archives/Public/public-rsp/2023
Mar/0000.html (accessed on 4 June 2024).

A similar representation for timestamped streams was proposed in 2010 by Barbieri
and Della Valle [41]. In the proposal, stream elements are named RDF graphs (called instan-
taneous graphs). These graphs are linked together with additional metadata placed in an
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additional named graph dedicated to this purpose (called a stream graph). Each instanta-
neous graph’s name node is associated with a timestamp triple using the sld:receivedAt
property. This formulation differs from the RSP Data Model mostly by placing the metadata
in a named graph instead of the default graph.

Time-Annotated RDF (TA-RDF) [42] is an alternative RDF representation for the
timestamped stream problem (more precisely, TA-RDF has a direct translation to RDF).
It identifies each stream element with a URI node in an RDF graph. The data relevant to
that stream element are then attached to the node. This boils down to each stream element
being an RDF graph in which a single node serves as the “point of entry”. This model
is notably less flexible than the RSP Data Model, as it requires the entire content of each
stream element to be connected to this single node. A similar approach is used by Stream
Containers [14], a framework for publishing RDF streams on the Web. There, a stream is a
sequence of unnamed RDF graphs that are referenced by URIs. This is not the same as RDF
named graphs, as each URI instead points to a node (the element’s subject) within one of
the unnamed graphs, and the temporal information is also contained within this graph.

One auxiliary RDF stream definition also appears in this category. The VoCaLS
vocabulary for describing linked streams [43] defines an RDF stream as a potentially
infinite sequence of RDF graphs and/or triples. This definition is used in practice in the
RSP4J API [33], whose YASPER implementation can consume streams of RDF graphs or
RDF triples.

2.3. Streaming Semantic Annotation and Translation

Several systems were developed for streaming semantic annotation (lifting) and trans-
lation. RMLStreamer [11,44] annotates data using the RML language [45], outputting a
stream of RDF datasets. CARML [46] is a Java library that provides generic facilities for
annotating data using RML. It supports outputting a stream of RDF quad statements (using
RDF4J Rio [47]), which corresponds to a single RDF dataset. CARML does not natively
support streams of datasets, and thus it operates on a different abstraction level than
RMLStreamer. This limitation is addressed by the Semantic Annotation enabler [48] from
the ASSIST-IoT project [49], which outputs a stream of RDF datasets, each corresponding
to one input document. SPARQL-Generate [50] is an extension of the SPARQL language,
which allows for generating RDF from various data sources. Its reference implementation
https://github.com/sparql-generate/sparql-generate (accessed on 4 June 2024) supports
outputting a stream of RDF triples (using Apache Jena RIOT [51]).

Last in this category is the Inter-Platform Semantic Mediator (IPSM) [52], which
translates a stream of RDF graphs into another such stream, in real time. Although on a
logical level IPSM processes RDF graphs, it physically outputs a stream of RDF datasets,
where each dataset has two named graphs—one containing the translated RDF and the
other with metadata about the translation itself.

2.4. Semantic Streaming Applications

Over the years, RDF streams have been employed in various real-life use cases. One
such example is DBpedia-Live [53]—a now-defunct service that published changes to the
DBpedia knowledge base in real time. Two streams were published—deleted and added
triples. In each stream, the elements were RDF graphs in the form of N-Triples files.

RDF streams are also commonly used in semantic sensor networks [16]. In this context,
the Graph of Things (GoT) [54] was proposed, which uses streams of RDF graphs. Another
common use case is monitoring social media activity. Here, a survey by Keskisärkkä
and Blomqvist [15] noted that RDF streams should have RDF graphs as elements, as this
approach better addresses the needs of their use case. However, they also acknowledge
that RDF streams can sometimes have RDF triples as elements. Streams are also used
for sending updates between decentralized social network servers, as in the ActivityPub
protocol [55] standardized by the W3C. In ActivityPub, an item of activity is described with
an RDF graph (in JSON-LD). These items form ordered streams of RDF graphs which are

https://github.com/sparql-generate/sparql-generate
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then exchanged between the nodes. The Linked Data Event Streams (LDES) [56] proposal
addresses publishing streams composed of elements, where each element is a fragment of
an RDF graph, identified by a specific subject node. Finally, the recent proposal for a live
open scientific knowledge graph [57] uses streams of RDF graphs to monitor scientific and
social activity in real time.

2.5. Streaming I/O

The last broad category of RDF streaming solutions are those that process simple
sequences of RDF statements (triples or quads) for input/output (I/O) operations. Two
examples are the RDF4J Rio toolkit [47] and Apache Jena’s RIOT [51], both of which can
parse and serialize streams of statements, reading from or writing to a Java byte stream.
The two most obvious serializations for this task are N-Triples and N-Quads; however, Jena
also supports streamed block formats for Turtle and Trig, where statements are transmitted in
small batches (blocks).

2.6. Summary

The review uncovered a wide variety of task formulations for RDF streams. It should
be noted that most of the identified works use the exact same term (RDF stream) to describe
very different concepts. The review also highlighted an important distinction between
theoretical models of RDF streams (e.g., timestamped triples) and practical ones, making
it clear that direct comparisons between the two are not possible. This distinction was
also observed earlier in several works [5,14,29,34]. Another contrasting feature is the use
of graphs or datasets as stream elements, versus singular triple or quad statements. This
was also noticed in earlier works focusing on the practical aspects of implementing RDF
streams [5,15].

Worth noting is that some works have several views of the same RDF stream. For
example, ERI [10] views its RDF streams as a flow of triples, blocks (RDF graphs), or
subject–molecules (RDF subgraphs), depending on the level of abstraction. This suggests
that describing the type of an RDF stream depends on the context in which it is considered,
or, metaphorically, one’s perspective. In fact, an N-Triples file would be considered by
RDF4J’s Rio [47] as a stream of triples, while an application like DBpedia-Live [53] or
IPSM [52] would see it as a single element in a stream of graphs.

The diversity of problem statements encountered in the literature clearly suggests
that expecting there to be a single model of RDF streams may be unrealistic, especially
given that each stream may be understood in several different ways, depending on the
perspective or context. Each of the identified approaches is motivated by some use case
and thus is valid. Therefore, we must seek solutions to better understand and harmonize
this task diversity, which is the primary goal of RDF-STaX.

3. Proposed Systematization

In what follows, we propose a set of definitions for the types of RDF streams present in
the literature and current practice. Then, Section 3.2 organizes these definitions in the RDF
Stream Taxonomy, and Section 3.3 links the proposed stream types to the state-of-the-art
review performed in the previous section. The basis for all following definitions is the
RDF 1.1 W3C Recommendation [3], which formally defines terms such as RDF graphs
and RDF triples, and must be implemented by any RDF 1.1-compliant software. We use it
with the aim of making our definitions readily applicable in the context of existing, RDF
1.1-compliant software.

The model-theoric semantics of RDF streams are not considered in this work. Instead,
the proposed semiformal definitions can be used as a universal basis on top of which the
formal semantics can be defined, as needed. This is motivated by, firstly, the semantics
of RDF streams being entirely irrelevant for some of the discussed application areas (e.g.,
streaming protocols, streaming I/O). Secondly, only the semantics of RDF graphs are well-
defined—there are no agreed-upon formal semantics for RDF datasets [58], and there are
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similarly many ways to approach this topic for RDF streams. Therefore, we leave this topic
for future discussion. The definitions are formulated in a semiformal manner similar to
the RDF 1.1 Concepts and Abstract Syntax W3C Recommendation [3] or the RSP Data
Model [40], with the goal of making them readily applicable for RDF practitioners.

3.1. RDF Stream Definitions

We start by defining a universal, abstract RDF stream that will serve as a common
denominator for further discussion:

Definition 1. An RDF stream is an ordered, potentially infinite sequence of RDF stream elements.

The manner in which the sequence is ordered is not specified on purpose, as this
depends on the use case. Often, the order will be defined by time, but a stream does
not have to be time-dependent (in fact, many methods do not consider time at all—see
Section 2). This definition also does not specify what exactly are the RDF stream elements,
as this is left to the further definitions that are based on it. Thus, we specialize the definition
further:

Definition 2. A grouped RDF stream is an RDF stream whose elements are either RDF graphs
or RDF datasets.

Definition 3. A flat RDF stream is an RDF stream whose elements are statements (either RDF
triples or RDF quads).

Grouped and flat RDF streams are still abstract, in the sense that their definitions are
not concretized enough for practical implementation. However, they correspond to an
important distinction between streams of groups of statements and streams of individual
statements. With this, we can define the concrete types of RDF streams which can be used
in practice:

Definition 4. An RDF graph stream is a grouped RDF stream whose elements are unnamed
(default) RDF graphs.

In other words, an element of an RDF graph stream is a set of triples. This is a
commonly used formulation that can be further specialized:

Definition 5. An RDF subject graph stream is an RDF graph stream in which every element
contains an IRI node (called the subject node) that uniquely identifies the graph in the stream. Every
other node in the graph can be reached by traversing triples, starting from the subject node.

RDF subject graph streams or similar formulations were proposed to handle times-
tamped RDF streams (TA-RDF [42] and Stream Containers [14]). ERI [10] uses a similar
formulation for subject–molecules, but its subject IRIs are unique only within one block.
The proposed definition is slightly broader than the timestamped models, while still being
useful—the advantage is that the element can be identified by an IRI, without using RDF
datasets. The rest of the element can be discovered with what can be intuitively thought of
as RDF graph connectivity.

We can then move on to streams of RDF datasets:

Definition 6. An RDF dataset stream is a grouped RDF stream whose elements are RDF datasets.

It should be noted here that although an RDF graph stream may seem like a special
case of an RDF dataset stream, it is not. According to RDF 1.1, an RDF dataset is not a
generalization of an RDF graph but rather a collection of RDF graphs. Thus, the definitions
of RDF dataset streams and RDF graph streams are not directly related to the taxonomy. It
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should be noted, however, that an RDF graph stream can be trivially transformed into an
RDF dataset stream, by simply assuming that each graph in the former is the default graph
in the dataset.

This definition can be further restricted to one named graph per element:

Definition 7. An RDF named graph stream is an RDF dataset stream in which every element
has exactly one named RDF graph pair ⟨n, G⟩, where G is an RDF graph, and n is the graph name.
Apart from graph G, the dataset may contain any number of triples in the default graph.

This is a simplified version of the RSP Data Model [40], without the temporal aspect.
Although we could find only one reference to this stream type in the literature (RSP
engines can consume such streams if an appropriate conversion is implemented [40]), it
is an intuitively important specialization of the RDF dataset stream. Here, every element
corresponds to one named RDF graph with some optional information (metadata) about
it in the default graph. As with RDF subject graph streams, this has the advantage of
identifying a stream element by IRI, albeit with more flexibility as to the element’s contents.

With this, we can move on to the timestamped variant:

Definition 8. A timestamped named graph is an RDF dataset in which:
(1) there is exactly one named RDF graph pair ⟨n, G⟩, where G is an RDF graph, and n is the graph
name;
(2) the default graph includes a timestamp triple ⟨n, p, t⟩, where p is a timestamp predicate that
relates t, called the timestamp, and the graph G.

Definition 9. A timestamped RDF named graph stream is an RDF named graph stream in
which every element is a timestamped named graph. The elements that share the same timestamp
predicate p are ordered by the partial order associated with p.

Definitions 8 and 9 were derived directly from the draft RSP Data Model [40]. Finally,
we define concrete flat RDF stream types:

Definition 10. A flat RDF triple stream is a flat RDF stream whose elements are triples.

Definition 11. A flat RDF quad stream is a flat RDF stream whose elements are quads.

An “RDF quad” is a term that is often used by practitioners but not defined in the
RDF 1.1 Recommendation. It is, however, defined in the RDF 1.2 Working Draft (16 April
2024) [59], and thus, we use the RDF 1.2 draft definition of quads here.

Flat RDF streams can be represented simply as N-Triples or N-Quads files; however,
contrary to RDF graphs and datasets, they have a defined order of statements. Similarly to
RDF graph and dataset streams, a triple stream is not a subclass of a quad stream, because
a triple is not a special case of a quad. However, a trivial transformation from one to the
other can be performed, by stating explicitly that the triples belong to the default graph.

Grouped and flat RDF streams are notably interrelated, as any RDF graph stream can
be flattened into an RDF triple stream by simply listing and concatenating the statements
in each of its elements—the same is true for RDF dataset streams and RDF quad streams.
The reverse is also possible, the elements of a flat stream can be grouped into a grouped
stream. Such operations are in fact common in streaming applications [5,6,10,15].

Finally, for all of the above definitions, their generalized variants can be trivially
derived (e.g., generalized RDF graph stream) by using generalized triples and generalized
datasets as their basis. We skip these definitions for the sake of brevity.

3.2. RDF Stream Taxonomy

The proposed definitions form a taxonomical structure of task formulations (RDF
Stream Taxonomy—RDF-STaX), summarized in Figure 1. This overview allows us to



Electronics 2024, 13, 2558 8 of 22

observe that each concrete RDF stream type uses one of the four element types, graph,
dataset, triple, and quad, possibly with additional restrictions on them. In fact, these four
types of elements seem to be the only conceivable ones that can be derived from the RDF
1.1 specification. For each of them, representing the stream element is a known and solved
problem (RDF serializations), and thus, they can be easily used in practical applications.
The abstract stream types are not directly usable in practice by themselves but rather serve
as the basis of the taxonomy and a shared starting point for other definitions.

Timestamped
RDF named
graph stream

RDF named graph
stream

RDF dataset streamRDF graph stream

RDF subject
graph stream

RDF stream

Grouped RDF stream Flat RDF stream

Abstract sequence
of RDF elements.

Flat RDF triple
stream

Flat RDF quad
stream

Flat sequence of
RDF statements
(abstract).

Sequence of RDF
graphs or datasets

(abstract).

Elements are
RDF graphs.

Each element has a
subject node.

Elements are
RDF datasets.

Each element has exactly
one named graph.

The default graph contains
a timestamp triple.

Elements are RDF
triples.

Elements are RDF
quads.

Legend

Abstract stream types

Concrete stream types

Figure 1. Overview of the RDF Stream Taxonomy (RDF-STaX).

3.3. Taxonomy Correspondence to the State of the Art

Finally, we link the proposed RDF stream types to the definitions used in state-of-
the-art research and software—Table 1 presents such a summary. As noted in Section 2.6,
a single RDF stream can be viewed from multiple perspectives, which is reflected in the
table, with some items appearing more than once when such a situation occurs. In some
cases, the correspondence is not ideal and there may be insignificant differences between
the definitions proposed here and those in the literature. The short descriptions presented
in the table are expanded upon in the nanopublications dataset, as described in Section 5.3.

Table 1. RDF stream type usage in research and software, according to RDF-STaX.

Stream type Uses

RDF graph stream

ActivityPub [55], DBpedia-Live [53], ERI (blocks) [10], GoT [54], IPSM (logical level) [52],
Jelly (stream frames) [6], Keskisärkkä and Blomqvist [15], Live open scientific knowledge
graphs [57], RDF EXI [24], RDSZ [23], RSP Data Model (can be consumed) † [40], RSP4J
YASPER (can be consumed) [33], S-HDT [22], VoCaLS [43]

RDF subject
graph stream

ERI (subject–molecule stream, only within a block) [10], LDES [56], TA-RDF [42], Stream
Containers [14]

RDF dataset stream
IPSM (output) [52], Jelly (stream frames) [6], RMLStreamer [11,44], RSP Data Model (can
be consumed) † [40], Semantic Annotation enabler [48]

RDF named
graph stream RSP Data Model (can be consumed) † [40]

Timestamped RDF
named graph stream

Barbieri and Della Valle ‡ [41], Linked Data Notifications for RDF streams [36], RSP Data
Model [40], Tappolet and Bernstein [39], TripleWave [37], Wu et al. [38]

Flat RDF
triple stream

Apache Jena RIOT [51], ERI (high level) [10], Groppe et al. [25], Jelly (high level) [6],
Keskisärkkä and Blomqvist (mentioned) [15], RDF4J Rio [47], RSP4J YASPER (can
consume) [33], SPARQL-Generate [50], VoCaLS [43]

Flat RDF
quad stream Apache Jena RIOT [51], CARML [46], Jelly (high level) [6], RDF4J Rio [47]

† The RSP Data Model states that these stream types can be consumed by RSP engines by adding timestamps to
each stream element. This is an optional feature of the RSP Data Model. ‡ The used representation differs from
the definition in RDF-STaX by placing the metadata of the elements not in the default graph of the RDF dataset
but in a dedicated named graph.
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Different types of RDF streams appear to be applicable in different settings. In the
context of network streaming applications, the most commonly used are grouped RDF
streams. Flat RDF streams, on the other hand, are used for streaming I/O and internally by
various applications.

4. RDF-STaX Ontology

To make the proposed taxonomy readily applicable, it was modeled as an OWL 2 DL
ontology (Figure 2), available at https://w3id.org/stax/1.1.1/ontology (accessed on 4 June
2024) under the Creative Commons Attribution 4.0 license. In the ontology, RDF stream
types are instances of either the stax:AbstractStreamType or the stax:ConcreteStream-
Type class, with taxonomical relations being realized using SKOS in the OWL DL ver-
sion [60,61]. The lightest ontology profile that could be used for RDF-STaX is the unofficial
OWL 2 DL, due to RDF-STaX being based on SKOS. This balances usefulness in the contexts
where ontological reasoning is used (by being compatible with a number of reasoners [62]),
with uses where ease of annotation takes precedence over semantics (e.g., in stream meta-
data or knowledge graphs with very little enforced semantics).

Each stream type instance in the RDF-STaX ontology is accompanied by a label,
description, formal definition, and usage example. The instances are not shown in Figure 2,
but the structure they form is identical to the one presented in the taxonomy overview
diagram (Figure 1), realized using the skos:broader property.

Subclass of

Property

RDF-STaX class

Other class stax:RdfElementType

stax:isUsageOf

stax:RdfStreamTypeUsagestax:RdfStreamType

stax:AbstractRdfStreamType

stax:canBeGroupedInto

stax:ConcreteRdfStreamType

skos:Concept

stax:hasStreamType

stax:hasElementType

stax:hasStreamTypeUsage

owl:Thing

stax:canBeTriviallyExtendedInto stax:canBeFlattenedInto

Figure 2. Classes and object properties in the RDF-STaX ontology.

It should be stressed that RDF-STaX does not define a class for RDF streams but rather
classes for RDF stream types. For example, stax:namedGraphStream is an instance of the
stax:ConcreteRdfStreamType class. The ontology also defines a class for RDF stream type
usages (stax:RdfStreamTypeUsage), which can be thought of as subjective views of how
an RDF stream is used in a specific context. This design philosophy is closely reflected in
the expected usage patterns, which are described in the next subsection.

The ontology includes rich semantic relations between stream types. Properties
stax:canBeFlattenedInto and stax:canBeGroupedInto relate grouped and flat stream
types that can be easily converted into one another. For example, an RDF graph stream can
be flattened into a flat RDF triple stream by concatenating its elements, while a flat RDF
quad stream can be grouped into an RDF dataset stream by punctuating it. The property
stax:canBeTriviallyExtendedInto is used for graph- and triple-based streams to indicate
that they can be trivially turned into dataset- and quad-based streams, respectively. This
transformation consists of stating explicitly that the triples are in the default graph. Object
property chains are defined in the ontology to allow reasoning on these relations, exploiting

https://w3id.org/stax/1.1.1/ontology
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the taxonomical relations from SKOS [61]. These reasoning rules are presented below, in
Manchester OWL Syntax [63]:

skos:broaderTransitive o stax:hasElementType
SubPropertyOf: stax:hasElementType

skos:broaderTransitive o stax:canBeFlattenedInto
SubPropertyOf: stax:canBeFlattenedInto

skos:broaderTransitive o stax:canBeGroupedInto
SubPropertyOf: stax:canBeGroupedInto

skos:broaderTransitive o stax:canBeTriviallyExtendedInto
SubPropertyOf: stax:canBeTriviallyExtendedInto

The ontology in version 1.1.1 includes 5 classes, 8 object properties, 15 individuals,
and a total of 192 axioms. The axiom count was obtained with the measure command in
ROBOT 1.9.6 [64] and does not include the imported SKOS vocabulary. The ontology’s
documentation https://w3id.org/stax/1.1.1/ontology (accessed on 4 June 2024) contains
a detailed description of every class, property, and individual. Additional information
facilitating ontology reuse is included, such as an explanation of the available ontology
formats, download links, and versioning information.

4.1. Ontology Usage Patterns

The proposed usage patterns for the RDF-STaX ontology reflect the philosophy of
having a subjective view of how an RDF stream is used. These patterns are described in
detail in the documentation https://w3id.org/stax/1.1.1/use-it (accessed on 4 June 2024),
along with several illustrative examples and links to further resources.

The primary usage pattern in RDF-STaX is to create instances of the stax:RdfStream-
TypeUsage class to annotate research works, software, or datasets, with each instance corre-
sponding to a different view or use case of the stream. This pattern was selected due to the
inherent subjectivity of determining the types of RDF streams, as discussed in Section 2.6.
Below is an example of how this pattern may be used to annotate a DCAT [65] Dataset:

@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix stax: <https://w3id.org/stax/ontology#> .

_:dataset a dcat:Dataset ;
# ... other properties of the dataset ...
stax:hasStreamTypeUsage [

a stax:RdfStreamTypeUsage ;
stax:hasStreamType stax:datasetStream ;
rdfs:comment "The data is a sequence of RDF datasets."@en

] , [
a stax:RdfStreamTypeUsage ;
stax:hasStreamType stax:flatQuadStream ;
rdfs:comment "The data can be viewed as a flat sequence of RDF

quads."@en↪→

] .

In some situations, it may be more convenient to annotate existing resources from an
external perspective. RDF-STaX also supports this through the use of the stax:isUsageOf
property. This is useful, for instance, when annotating published research papers or
software with the RDF stream types that they use. This is illustrated in the example below,
where the publication about IPSM [52] is annotated:

https://w3id.org/stax/1.1.1/ontology
https://w3id.org/stax/1.1.1/use-it
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix stax: <https://w3id.org/stax/ontology#> .

_:usage a stax:RdfStreamTypeUsage ;
rdfs:comment "The authors state that for their proposed system, 'the

streaming element (i.e., a single message) (...) is a set of
triples'. Therefore, internally it uses an RDF graph stream."@en ;

↪→

↪→

stax:hasStreamType stax:graphStream ;
stax:isUsageOf <https://doi.org/10.1109/ICSTCC.2017.8107003> .

4.2. Alignments to Other Ontologies

The RDF-STaX ontology is aligned with other existing vocabularies with the use of
semantic relations to foster the reuse of multiple ontologies linked together. Additionally,
alignments can make it easier to understand the concepts introduced in RDF-STaX by
comparing them to concepts already present in other vocabularies. However, as detailed in
the comparison with the state of the art (Section 6.4), we could identify no other ontologies
that would define the same concepts as RDF-STaX in a manner that would enable creating
semantically strict, direct alignments (e.g., a subclassing relation). Instead, in cases where
other ontologies define terms that are similar to those in RDF-STaX, a skos:relatedMatch
alignment is provided. This essentially states that the meaning of the two concepts in
different vocabularies is similar.

The following list enumerates the alignments that are provided in RDF-STaX release
1.1.1. Section 6.4 contains further discussion on this topic, comparing the meaning of
RDF-STaX’s terms with those of other ontologies.

• SPARQL 1.1 Service Description vocabulary [66]—the classes for RDF graphs
(sd:Graph) and datasets (sd:Dataset) were aligned with the corresponding terms
in RDF-STaX (stax:graph and stax:dataset, respectively), which are instances of
class stax:RdfElementType.

• VoCaLS [43]—the vocals:RDFStream class was aligned with both the stax:flat-
TripleStream and stax:graphStream instances in RDF-STaX.

• LDES [56]—the ldes:EventStream class was aligned with the stax:subjectGraph-
Stream instance in RDF-STaX.

• VoID [67]—the void:Dataset class was aligned with the stax:flatTripleStream
instance in RDF-STaX.

4.3. Availability and Sustainability

The sources of the RDF-STaX ontology and its documentation are hosted on GitHub
https://github.com/RDF-STaX/rdf-stax.github.io (accessed on 4 June 2024). The reposi-
tory includes continuous integration and deployment (CI/CD) scripts that automatically
validate the ontology’s profile, run competency question tests (see Section 5), generate
documentation, run an OWL 2 reasoner to add more assertions, package the ontology into
a number of formats, and publish it on the website: https://w3id.org/stax (accessed on 4
June 2024). Two versions of the ontology are published: OWL 2 DL, which can be used with
reasoners (containing 249 triples), and OWL 2 Full (294 triples), which contains more meta-
data and alignments to other vocabularies. The latter is intended for use in contexts where
ontological reasoning is not needed, e.g., for SPARQL querying. The additional metadata
present there violates the OWL 2 DL profile, hence producing an OWL 2 Full ontology.

The ontology uses best practices for findability, accessibility, interoperability, and
reusability (FAIR), developed by the community [68], compliance with which is evaluated
in Section 6.3. All releases of the ontology, including the OWL 2 DL and OWL 2 Full
variants, are distributed through the RDF-STaX website, under a permanent URL hosted
by the W3C Permanent Identifier Community Group. The ontology is also archived in
Zenodo [69] and registered in DBpedia Archivo https://archivo.dbpedia.org/info?o=https:

https://github.com/RDF-STaX/rdf-stax.github.io
https://w3id.org/stax
https://archivo.dbpedia.org/info?o=https://w3id.org/stax/ontology
https://archivo.dbpedia.org/info?o=https://w3id.org/stax/ontology
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//w3id.org/stax/ontology [70] (accessed on 4 June 2024) and Linked Open Vocabularies
https://lov.linkeddata.es/dataset/lov/vocabs/stax [71] (accessed on 4 June 2024).

RDF-STaX is an open and freely licensed project, welcoming contributions to the on-
tology, its documentation, and tooling. A usage guide https://w3id.org/stax/1.1.1/use-it
(accessed on 4 June 2024) with several use case scenarios and examples was prepared to
facilitate adoption. To ensure long-term sustainability, a comprehensive contribution guide
https://w3id.org/stax/1.1.1/contributing (accessed on 4 June 2024) was provided, along
with a public issue tracker https://github.com/RDF-STaX/rdf-stax.github.io/issues (ac-
cessed on 4 June 2024). The project is entirely hosted on the permanently free infrastructure
of GitHub and w3id.org, which should ensure its long-term stability.

5. Use Cases

In what follows, the three most representative use cases envisioned for RDF-STaX are
described. The first use case is annotating published datasets and streams (for example, on
the Web) to improve their accessibility and interoperability. The second use case focuses
on achieving RDF streaming tool interoperability by embedding stream-type metadata
within the stream itself. The final envisioned application is analyzing the state of the art
(SOTA) of RDF streaming in research and software to easily compare different solutions
and foster compatibility.

All of these use cases are described in detail below, along with accompanying compe-
tency questions (CQs) realized as SPARQL queries that should be run against the RDF-STaX
ontology in the OWL 2 Full version. The CQ queries are available in RDF-STaX’s documen-
tation https://w3id.org/stax/1.1.1/uses/cq/ (accessed on 4 June 2024) and are used to
automatically and continuously test the ontology’s validity with regard to the use cases, as
described in Section 6.1. Two of the presented use cases (published dataset annotation and
analyzing the SOTA of RDF streaming) are already realized in practice, as detailed below.
The three presented use cases should only be considered a starting point for RDF-STaX, as
the community may over time find new ways in which to use it. The resource is expected
to evolve over time (through a process called ontology evolution in the literature [72])
to remain up to date with the community’s needs. To enable this, RDF-STaX adopts a
thoroughly open paradigm, inviting outside contributions.

5.1. Annotating Published Datasets and Streams

In this use case, RDF-STaX’s stream types are used as metadata of datasets or streams
published on the Web (for example, using the Linked Data mechanisms). This use case
can be viewed from two sides—the publisher’s and the end user’s, which is reflected in
the defined competency questions (see Table 2). The questions pertain to obtaining basic
information about the defined stream types (CQ1.1 and CQ1.2). This can be used by the
publisher to decide which stream type to use, and by the end user to understand what that
stream type really is. Questions CQ1.3 and CQ1.5 play an analogous role but also aim to
provide additional context by relating the terms in RDF-STaX to external sources (other
ontologies). Finally, CQ1.4 serves the end user by providing links to examples of how each
stream type can be used in practice.

This use case was implemented in RiverBench [73], an open RDF streaming benchmark
suite, containing heterogeneous streaming datasets that are published using automated
pipelines, following FAIR principles. RiverBench integrates with the RDF-STaX ontology,
requiring all datasets to be annotated with their stream types. Each dataset has two stream
types assigned, one for the grouped stream formulation and another for the flat. The consis-
tency of the annotations is checked in CI/CD using SHACL rules [74] and the semantic re-
lations defined in RDF-STaX (SKOS taxonomy properties and stax:canBeFlattenedInto).
The datasets are then organized into benchmark profiles by their stream type. The pub-
lished dataset documentation and RDF metadata based on DCAT [65] also includes the
RDF stream type information.

https://archivo.dbpedia.org/info?o=https://w3id.org/stax/ontology
https://archivo.dbpedia.org/info?o=https://w3id.org/stax/ontology
https://archivo.dbpedia.org/info?o=https://w3id.org/stax/ontology
https://lov.linkeddata.es/dataset/lov/vocabs/stax
https://w3id.org/stax/1.1.1/use-it
https://w3id.org/stax/1.1.1/contributing
https://github.com/RDF-STaX/rdf-stax.github.io/issues
https://w3id.org/stax/1.1.1/uses/cq/
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Table 2. Competency questions for use case 1—annotating published datasets and streams. Full
SPARQL queries and expectations for each test can be found on the ontology’s website: https:
//w3id.org/stax/1.1.1/uses/cq/#use-case-1 (accessed on 4 June 2024).

# Competency Question

CQ1.1 What are the names and descriptions of all RDF stream types?
CQ1.2 What is the definition for each stream type?

CQ1.3 What is the type of element of each concrete stream type? Provide additional references
to external sources for each element type, if available.

CQ1.4 How can each of the concrete stream types be used? Provide a link to one example for each.

CQ1.5 What are the corresponding terms from other ontologies to those defined in the
RDF-STaX ontology?

At the time of submission, RiverBench’s 2.0.0 release includes 12 datasets that use
each stream type in RDF-STaX, except the RDF named graph stream (however, there are
examples of the timestamped variant). The full metadata dump of RiverBench 2.0.0 consists
of 9280 triples, including 201 stax:hasStreamTypeUsage annotations. Detailed technical
information about this use case along with examples are available on the RDF-STaX website:
https://w3id.org/stax/1.1.1/uses (accessed on 4 June 2024).

5.2. Embedding Metadata in Streams

This use case focuses on embedding stream-type metadata within the stream itself,
with the goal of enabling streaming system interoperability. For example, a stream producer
would state that the stream is of a given type, and then the consumer would check if it
can consume this type of stream or convert it into a consumable stream. As this use case
focuses on automated handling of streams, the competency questions (see Table 3) exploit
the reasoning capabilities of RDF-STaX. Thus, CQ2.1, CQ2.2, CQ2.3, and CQ2.4 all address
different possible transformations a stream processor could perform on an RDF stream.

Table 3. Competency questions for use case 2—embedding metadata in streams. Full SPARQL queries
and expectations for each test can be found on the ontology’s website: https://w3id.org/stax/1.1.1/
uses/cq/#use-case-2 (accessed on 4 June 2024).

# Competency Question

CQ2.1 Which concrete stream types can be viewed as generalizations of other stream types?

CQ2.2 Which concrete stream types can be trivially extended (by assuming the default graph)
into other stream types?

CQ2.3 Which concrete stream types can be flattened into other stream types?
CQ2.4 Which concrete stream types can be grouped to obtain other stream types?

5.3. Analyzing the State of the Art of RDF Streaming

The final use case pertains to analyzing the SOTA of RDF streaming by annotating
published research works and software with the RDF stream types used by them. This task
is thus very closely related to the SOTA analysis performed in this paper in Section 3.3.
As with any other scientific field, however, the landscape of RDF streaming changes
rapidly, and therefore, using the RDF-STaX ontology in combination with a knowledge
base of research works can help automate some literature review processes. Therefore,
the defined competency questions (see Table 4) tackle more complex issues that may
be asked when analyzing the correspondences between the annotated research works.
CQ3.1 and CQ3.2 pertain to the taxonomical structure of RDF-STaX, helping the user
understand how the different stream types relate to each other. Meanwhile, CQ3.3 attempts
to find pairs of essentially incompatible RDF stream formulations, i.e., those that cannot
be trivially converted into each other. This would serve to identify methods that cannot
easily interoperate.

https://w3id.org/stax/1.1.1/uses/cq/#use-case-1
https://w3id.org/stax/1.1.1/uses/cq/#use-case-1
https://w3id.org/stax/1.1.1/uses
https://w3id.org/stax/1.1.1/uses/cq/#use-case-2
https://w3id.org/stax/1.1.1/uses/cq/#use-case-2
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Table 4. Competency questions for use case 3—analyzing the state of the art of RDF streaming.
Full SPARQL queries and expectations for each test can be found on the ontology’s website: https:
//w3id.org/stax/1.1.1/uses/cq/#use-case-3 (accessed on 4 June 2024).

# Competency Question

CQ3.1 What are the taxonomical parents of each stream type, listed in order?
CQ3.2 Is there any stream type that is a taxonomical parent or child of itself?

CQ3.3
Which conversions between concrete stream types cannot be performed in any trivial
way (grouping, flattening, extending)? Allow for multiple trivial transformations in
series and take into account the taxonomical structure.

This use case was implemented within the scope of this work, with a nanopublication
dataset of research works on RDF streaming. A nanopublication is a small unit of scientific
knowledge published in RDF [75]—it can be an opinion, a measurement, or any other
assertion. Nanopublications are a natural way to express statements about scientific works
or software due to their strong provenance mechanisms and citeability. This fits well
with the pattern of subjective statements about stream types, which is used in RDF-STaX.
Therefore, to make it easier to create nanopublications with the RDF-STaX ontology, a
template was prepared for Nanodash, an open nanopublication editor [76]. The template
along with the accompanying manual https://w3id.org/stax/1.1.1/nanopubs (accessed
on 4 June 2024) makes it easy to create and publish semantic assertions such as “X uses
stream type Y because Z”, requiring the user to only fill out a simple online form.

The results from the survey conducted in this paper (as summarized in Section 3.3)
were published as 35 nanopublications using the aforementioned mechanism, totaling
876 triples. The nanopublications include a more elaborated discussion of each stream type
usage, providing more details than Table 1. The RDF-STaX nanopublications are packaged
as a single knowledge graph in a CI/CD pipeline and published automatically on the
website https://w3id.org/stax/1.1.1/nanopubs (accessed on 4 June 2024), where they can
be downloaded and reused under the free CC BY 4.0 license. Anyone can contribute to
the dataset by simply publishing nanopublications with the provided Nanodash template.
Effectively, the dataset along with the publishing mechanism can serve as a collaborative,
living state-of-the-art review, allowing one to easily compare and discuss works on RDF
streaming, in a structured manner. A similar mechanism for living literature reviews
was previously proposed by Wijkstra et al. [77] to whose work we refer the reader for
more context.

6. Ontology Evaluation

This section presents the results of a multifaceted evaluation of the RDF-STaX ontology.
Firstly, the evaluation includes checking use case coverage with the use of competency
questions defined in Section 5. Secondly, the validity of the ontology is evaluated with
regard to the OWL specification and its logical consistency. Thirdly, the findability, accessi-
bility, interoperability, and reusability aspects of the ontology are evaluated, especially with
regard to the current, community-developed best practices. Finally, RDF-STaX is compared
with other similar resources, highlighting the advances offered by this work.

6.1. Use Case Coverage

This evaluation is based on the twelve competency question tests defined in Section 5.
Each of these tests was written down as a SPARQL query paired with the expectation
for the test, which specifies how many results should the query return when run against
the RDF-STaX ontology. The tests are run in sequence by a CI/CD job implemented in
the Python language, with the rdflib library [78]—source code is available on GitHub
https://github.com/RDF-STaX/ci-worker (accessed on 4 June 2024) under the Apache
2.0 license. The job is triggered on every ontology release (including the development
release) and pull request. If any test fails, the ontology will not be released, thus ensuring
that it always covers the competency questions from the use cases. Further technical

https://w3id.org/stax/1.1.1/uses/cq/#use-case-3
https://w3id.org/stax/1.1.1/uses/cq/#use-case-3
https://w3id.org/stax/1.1.1/nanopubs
https://w3id.org/stax/1.1.1/nanopubs
https://github.com/RDF-STaX/ci-worker
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implementation details on the tests are available in the documentation: https://w3id.org/
stax/1.1.1/contributing/#competency-question-tests (accessed on 4 June 2024).

At the time of submission (RDF-STaX release 1.1.1), the CI/CD job reports that the
ontology successfully passes all competency question tests. Additionally, the fact that
the ontology was employed in two implemented applications (see Section 5) serves as
additional validation of the ontology’s usefulness and practicality [79].

6.2. Logical and OWL Profile Validity

The purpose of this evaluation is to check if the ontology meets the requirements of
specific OWL 2 profiles [80], which strike different balances between the expressive power
of the ontology and reasoning efficiency. Similarly to the use case coverage evaluation,
the compliance checks with OWL 2 profiles were implemented as CI/CD jobs, which run
on any ontology release and pull request. Both distributions of the ontology (OWL 2 DL
and OWL 2 Full) are checked to see if they match their respective profile. The check is
performed using ROBOT’s [64] validate-profile command. Additionally, the logical
consistency of the ontology is validated in CI/CD with ROBOT’s reason command, using
the HermiT reasoner [81].

At the time of submission (RDF-STaX release 1.1.1), the CI/CD job reports that both
distributions of the ontology (OWL 2 DL and OWL 2 Full) are compliant with their re-
spective profiles, with no inconsistencies. For additional validation, RDF-STaX 1.1.1 was
checked with the publicly available Ontology Pitfall Scanner (OOPS!) [82], which reported
no critical issues.

6.3. Findability, Accessibility, Interoperability, and Reusability

The question of what constitutes a FAIR ontology in practice is a complicated one [83],
with many possible interpretations for each of the FAIR Guiding Principles [84]. To best
reflect the needs of the Semantic Web community and ensure impartiality, in this evalua-
tion, we chose to rely on two well-known, publicly available, automatic FAIR evaluators:
FOOPS! [85] and DBpedia Archivo [70]. The following results can be easily reproduced by
inputting into either of them the RDF-STaX ontology IRI.

In FOOPS!, RDF-STaX obtained a score of 95%, with 8.83/9 points in findability, 3/3
in accessibility, 3/3 in interoperability, and 7.92/9 in reusability (Figure 3a). All of the
issues reported by the tool are minor. In DBpedia Archivo, RDF-STaX obtained 4/4 stars
(Figure 3b). It should be stressed here that Archivo’s manual states that such a result means
the ontology has reached “minimum viability” in the context of FAIR but is not necessarily
“good”. However, at the time of submission, this is the highest possible rating offered by
DBpedia Archivo, with only 20.03% of all indexed ontologies having four out of four stars.

(a)
Figure 3. Cont.

https://w3id.org/stax/1.1.1/contributing/#competency-question-tests
https://w3id.org/stax/1.1.1/contributing/#competency-question-tests
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(b)
Figure 3. FAIR evaluation results for RDF-STaX: Both screenshots were taken on 4 June 2024. (a) FAIR
evaluation results obtained from FOOPS! [85]. (b) FAIR evaluation results obtained from DBpedia
Archivo [70].

6.4. Comparison with the State of the Art

To the best of our knowledge, there is no other ontology or vocabulary that would
model RDF stream types. As previously noted, the RDF-STaX ontology purposefully does
not define classes for RDF streams but rather focuses on subjective RDF stream usages.
This difference makes other ontologies nonoverlapping—instead, RDF-STaX can naturally
complement them. As shown below, each existing ontology also covers only one or two se-
lected formulations of the RDF streaming problem. Thus, RDF-STaX can provide a common
semantic bridge to describe RDF stream types across different underlying vocabularies.
To this end, the documentation includes examples https://w3id.org/stax/1.1.1/use-it/
(accessed on 4 June 2024) of using RDF-STaX with these complementary ontologies (Vo-
CaLS, VoID, LDES, and DCAT). The expected usage pattern is to define an RDF stream or a
dataset with these ontologies as usual and add the stax:hasStreamTypeUsage property to
indicate the stream type according to RDF-STaX. The same pattern can be used with any
future ontology for describing streams or datasets.

In what follows, the relevant ontologies are discussed in detail, focusing on their
differences and complementarities with RDF-STaX. In the discussion, only publicly avail-
able ontologies are included, as otherwise it would not be possible to reliably assess the
ontology’s scope and semantics.

The VoCaLS vocabulary [43] is intended to help publish streaming data using the
Linked Data principles and to describe streaming services. It defines the vocals:RDFStream
class for potentially infinite sequences of RDF graphs and/or triples. Instances of this class
can be thus annotated as RDF graph streams or flat RDF triple streams in RDF-STaX. As
RDF-STaX does not define a class for RDF streams (but rather has instances of RDF stream
types), the two ontologies are entirely complementary. Due to the different semantics of the
terms in VoCaLS and RDF-STaX, a direct semantic connection (e.g., subclassing) between
the two ontologies cannot be made. Instead, a skos:relatedMatch alignment is provided,
along with a suggested usage pattern in the documentation of RDF-STaX.

The Linked Data Event Streams (LDES) vocabulary [56] defines the ldes:EventStream
class, which is a collection of stream elements—sets of RDF triples. Each element is
identified with its subject node. Therefore, instances of this class can be annotated in
RDF-STaX as RDF subject graph streams. Such an alignment was added to the ontology.

The VoID vocabulary [67] describes datasets with RDF data (not RDF datasets as
per RDF 1.1), which are in fact sets of triples with additional context information. Thus,
instances of class void:Dataset can be annotated as RDF-STaX’s flat RDF triple streams.
This alignment was added to the ontology.

The more general DCAT [65] vocabulary describes datasets and their distributions.
These datasets may be RDF streams, but DCAT does not assume any specific format of the
datasets annotated with it. Therefore, RDF-STaX can be used as a complementary tool to
annotate the type of the stream contained within such a dataset—this is performed, for
example, in RiverBench; see Section 5.1.

The RDF-STaX ontology also defines four element types (RDF graphs, triples, quads,
and datasets). In this regard, we could identify only the SPARQL 1.1 Service Description
vocabulary [66], which has the sd:Graph and sd:Dataset classes for RDF graphs and
datasets. These classes were aligned with the corresponding terms in RDF-STaX, using the
skos:relatedMatch property.

https://w3id.org/stax/1.1.1/use-it/
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In summary, to the best of our knowledge, RDF-STaX is the first taxonomy and
ontology that allows describing more than one type of RDF stream, making it a crucial step
in enabling RDF streaming interoperability and understanding the field’s state of the art.

7. Discussion and Future Work

Although the “RDF stream” is a term that is now ubiquitous in research, it is used to
describe many different concepts. There is no universally accepted language for describing
RDF streams, which leads to a situation in which RDF streaming solutions become hard
to assess, compare, and connect together. For example, forming a pipeline composed of a
stream annotator, translator, streaming protocol, and reasoner currently appears to be a
tough challenge, as it is hard to determine what exactly is an RDF stream for each of these
tools and whether these formulations are compatible with each other or not.

It appears that the variety of RDF stream formulations is here to stay. Each of the
different definitions has its merits and use cases, and none of them should be disregarded.
Instead, we call to embrace the variety of RDF streams by systematizing them in one shared
taxonomy. The taxonomy, with its semantic relations (taxonomical, flattening, grouping,
extending—see Section 4), allows one to reason about stream types not only in terms of
subclassing but also in terms of possible conversions between them. This, we hope, will be
a much-needed step in the direction of making RDF stream applications more compatible
with each other.

RDF-STaX is embodied in an ontology that makes the taxonomy readily usable in
practice. The ontology does not attempt to replace any existing vocabulary for describing
streams or datasets but rather aims to complement them and serve as a shared semantic
bridge between them. We hope that by being nonoverlapping by design and focused on
a single purpose, RDF-STaX will remain useful and relevant in the long term. The three
presented use cases, two of which were already realized in practice, are common and well
known to the community, making the ontology all the more relevant.

Another result of this work is the nanopublications dataset, which is a collaborative,
living state-of-the-art review of RDF streaming. Nanopublications, in our view, are a natural
way to structure the intersubjective scientific discourse. It is possible, for example, to
comment on other nanopublications and confirm or disagree with them, all in a structured
manner. Here, we propose to use this powerful tool for a very narrow field of science
(RDF streaming), but its possible future applications are certainly much broader [77]. We
encourage other researchers to contribute their perspectives to the dataset or to comment
on the existing assertions.

As for future work, the theory presented in this contribution notably does not tackle
the formal semantics of RDF streams. As with RDF datasets, it is unlikely that there can be
single, unifying semantics for streams, but, nonetheless, we see this area as worth exploring
in the future. The presented survey of RDF streaming is also not a systematic review—it
only serves as a basis for the discussion in this work. Producing a systematic review of
RDF streaming would be very valuable to the community, and we hope that the proposed
taxonomy and the provided nanopublication tooling will make creating it easier.

8. Conclusions

In this work, we propose the RDF Stream Taxonomy, which systematizes RDF stream
definitions found in the literature. The taxonomy uncovered the variety of RDF streaming
in research and practice, highlighting the open challenge of making the different applica-
tions compatible with each other. The proposed RDF-STaX ontology embodies the semantic
relations between stream types in the taxonomy and makes the definitions readily ap-
plicable. The ontology positions itself as complementary to existing vocabularies and
employs a flexible approach which consists of making subjective statements about the
types of RDF streams. The ontology and its documentation are fully open and follow
community-developed best practices for FAIR.
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The ontology was designed with three use cases in mind, with supporting competency
questions for each. Two of these use cases were already implemented—annotating research
works in nanopublications and describing RDF stream types of streaming datasets. The
nanopublications dataset is an added contribution of this work, constituting a living state-
of-the-art review that anyone can contribute to by using the provided documentation
and tooling.
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73. Sowiński, P.; Ganzha, M.; Paprzycki, M. RiverBench: An Open RDF Streaming Benchmark Suite. arXiv 2023, arXiv:2305.06226.
74. Knublauch, H.; Kontokostas, D. Shapes Constraint Language (SHACL). W3C Recommendation, W3C. 2017. Available online:

https://www.w3.org/TR/2017/REC-shacl-20170720/ (accessed on 28 June 2024).
75. Kuhn, T.; Barbano, P.E.; Nagy, M.L.; Krauthammer, M. Broadening the scope of nanopublications. In Proceedings of the

The Semantic Web: Semantics and Big Data: 10th International Conference, ESWC 2013, Montpellier, France, 26–30 May 2013;
Proceedings 10; Springer: Berlin/Heidelberg, Germany, 2013; pp. 487–501.

76. Kuhn, T.; Taelman, R.; Emonet, V.; Antonatos, H.; Soiland-Reyes, S.; Dumontier, M. Semantic micro-contributions with
decentralized nanopublication services. PeerJ Comput. Sci. 2021, 7, e387. [CrossRef]

77. Wijkstra, M.; Lek, T.; Kuhn, T.; Welbers, K.; Steijaert, M. Living literature reviews. In Proceedings of the 11th Knowledge Capture
Conference, Virtual Event, 2–3 December 2021; pp. 241–248.

78. RDFLib Contributors. RDFLib 7.0.0. Available online: https://rdflib.readthedocs.io/en/stable/ (accessed on 17 April 2024).

http://dx.doi.org/10.1108/00330331211221828
http://dx.doi.org/10.1016/j.websem.2016.02.003
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/
https://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/
https://www.w3.org/TR/2024/WD-rdf12-concepts-20240416/
http://dx.doi.org/10.1186/s12859-019-3002-3
http://www.ncbi.nlm.nih.gov/pubmed/31357927
https://www.w3.org/TR/2023/WD-vocab-dcat-3-20230307/
https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
https://www.w3.org/TR/2013/REC-sparql11-service-description-20130321/
https://www.w3.org/TR/2011/NOTE-void-20110303/
https://zenodo.org/records/11476591
http://dx.doi.org/10.3233/SW-160213
http://dx.doi.org/10.1017/S0269888913000349
https://www.w3.org/TR/2017/REC-shacl-20170720/
http://dx.doi.org/10.7717/peerj-cs.387
https://rdflib.readthedocs.io/en/stable/


Electronics 2024, 13, 2558 22 of 22
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